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Abstract. The two-dimensional Ising model on the square lattice with a fraction of 
periodically distributed frustrated cells equal to 1, 3, and f is solved rigorously. It is shown 
that a phase transition, understood in the sense of a singularity in the specific heat, exists for 
the two latter model systems while it disappears for the completely frustrated lattice. The 
phase transition temperatures are lower than that of a ferromagnetic Ising model and 
increase with decreasing frustration. The mean-field approximation results suggest that 
long-range order is present in areas of nonfrustrated cells. 

1. Introduction 

The nature of phase transitions in spin glasses has recently been intensely investigated 
(for a review see e.g. Fisher 1977 and Kinzel and Fisher 1978). The experimental data 
show that random magnets differ qualitatively from pure systems. There is no 
singularity in the field-dependent properties of spin glasses, but at a certain charac- 
teristic temperature Tt a cusp in the static magnetic susceptibility appears. However, no 
well defined characteristic temperature has been observed in the thermal properties. 

A phase transition in a spin glass is still a very guzzling matter. Monte-Carlo 
calculations of two-dimensional Ising spin glasses showed that the specific heat exhibits 
a very broad peak (Binder and Schroder 1976, Binder 1977, Kirkpatrick 1977a, b) 
whereas the susceptibility has a very sharp cusp. However, numerical techniques can 
never yield a definite proof that a phase transition either does or does not exist, nor does 
it yield any other rigorous results. On the other hand, the real-space renormalisation 
group technique gives only very inconclusive answers (Kinzel and Fisher 1978) while 
extrapolation of the high-temperature series expansions suggests that no phase tran- 
sition occurs for dimensionality d below four (Fisch and Harris 1977). In this situation 
it is still a question of whether a phase transition appears in a two-dimensional spin 
glass, and, if so, how it should be understood. 

In the theoretical description of spin glasses, a concept of relevant and irrelevant 
disorder has been introduced (Toulouse 1977, Vannimenus and Toulouse 1977, and 
Kirkpatrick 1977b). It is well known that there is a class of models, commonly known as 
Mattis models (Mattis 1976), for which randomness is trivial since it can be eliminated 
by a suitable gauge transformation. Therefore, Toulouse (1977) and Kirkpatrick 
(1977b) advanced the concept of frustration as a measure of relevant disorder. The idea 
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of frustration is that not all the bond interactions around an elementary circuit in a 
lattice can be simultaneously satisfied. For a plane random Ising model this situation 
appears for a particular square while one of the bonds has a different sign from the other 
three. Consequently, the properties of a random magnet are dependent on the 
distribution of frustrated elementary cells and not on the ratio between positive and 
negative bonds (Fradkin et a1 1978). 

Frustrated cells are distributed randomly in a spin glass. Any theoretical approach 
to such a system has to deal with averaging over the probability distribution of 
frustrated cells. This is a very difficult problem in the theory of spin glasses (Edwards 
and Anderson 1975, Sherrington and Kirkpatrick 1975, Thouless et a1 1977) and, 
therefore, the concept of frustration can only be rigorously studied on some simple 
model systems. Such a study has recently been performed by Derrida et a1 (1978) for 
the random-bond and random-field one-dimensional Ising chains, and the small 
random-bond systems of spins in two dimensions. Their results indicate existence of a 
singularity in dS/dx in two dimensions, where x is a concentration of negative bonds, 
which is interpreted as a ferromagnet-spin-glass phase transition with increasing 
concentration of negative bonds. 

As emphasised by Toulouse (1977) it is necessary to study the frustration effect in its 
own right, at first in simple cases unobscured by all the intricacies of real spin glasses. In 
this paper we report the exact results obtained for two-dimensional king model systems 
with periodically distributed lines of frustrated cells. These models contain 100°/~, 
67%, and 50% of frustrated cells, respectively. The partition function is found 
rigorously in a frame of the dimer method, as derived in § 2. The internal energy, 
the specific heat and the entropy are next calculated and displayed in § 3. With the 
mean-field approximation, introduced in § 4, we comment on the problem of the 
existence of long-range order in the systems with frustration. The final remarks and 
discussion are given in § 5 .  

2. Models with periodically distributed frustration and the dimer method 

The Hamiltonian of a two-dimensional Ising model reads 

i j  

where primed summation excludes the terms with i > j ,  S :  = r t l ,  and Jii is the exchange 
interaction constant between the spins located at sites i and j .  Let us assume that it takes 
only two values: J and -J. If all the interaction constants are equal to J ,  one has a 
perfect ferromagnet. Replacement of any positive bond by a negative bond produces 
two adjacent frustrated cells. On the other hand, if the sign of Jii is reversed on all bonds 
around one site, this is not a serious disorder because, by flipping the spin on that site, 
one obtains a spin configuration which has the same energy as in the perfect ferro- 
magnet. This property is a consequence of the gauge invariance of the Hamiltonian (1) 
with respect to such a transformation. 

Here we will consider only the models in which reversing the signs of some Jii in the 
Ising ferromagnet leads to a relevant disorder. A model in which all the cells are 
frustrated can be obtained if the bonds on every second line in one (say vertical) 
direction are considered negative whereas all the other bonds are positive. Such a 
model was previously discussed by Villain (1977) and will henceforth be called the 
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Villain model. Less frustrated cells are obtained, if the bonds on every third or fourth 
vertical line are negative, which give a ratio of $ and of frustrated cells. These two 
systems will be called B and C models, respectively. We present the unit cells of all 
three models in figure 1. 

Thermodynamic properties of the models introduced above can be obtained with 
the help of the so called dimer method developed for the perfect Ising model by 
Kasteleyn (1963) and Montroll et a1 (1963). Calculation of the partition function is in 
this method reduced to the combinatorial problem of dimers occupying neighbouring 
sites of a lattice graph. Then the partition function of the Ising model can be evaluated 
as a Pfaffian P ( A ) ,  where A is a 4 N  x 4N matrix constructed for a lattice of the size 
N x N. The Pfaffian itself is the square root of a skew-symmetric determinant. For the 
details of this method we refer the reader to the original papers (Kasteleyn 1963, 
Montroll et a1 1963). 

For the models with periodically distributed frustration the matrix A has a cyclic 
structure with N identical non-zero matrices of dimensionality 4m x 4m standing on its 
diagonal, where N is the number of elementary cells (see figure 1) and m is the number 
of lattice sites per elementary cell. Therefore, the expression for the free energy per 
spin reads 

1 - lim -In 2 
F 

k B T  N-mN 
2.rr 1 27r 

= ln(2cosh2 K )  +y d42 W e t  A (41,4211, (2) 8mr lo d4'lo 
where A (q51, 42)  is a 4m x 4m matrix defined below. 

ferromagnet can also be expressed. Let us define the first five matrices a(i ,  j ) :  
The matrix A (41, 42)  consists of 4 x 4 matrices by which a solution of a perfect Ising 

/ 0 1 -1 -l\ 

\ 1 1 -1 o /  
i o  2 0 o \  

a(1,O) = -aT(-1, 0) = 1: : : :I (3) 

\ o  0 0 0, 
10 0 0 o\ 

1: : : 9 1 9  

a ( 0 , l )  = -aT(O, -1) = 

\ o  0 0 o/ 
where 2 = tanh J/kBT.  The elements of A ( ~ L  42)  will be defined with the help of 
matrices Ai, 

AI = a(0,O) - a (0 , l )  exp( i#~~)  - a(0,  -1) exp(-i42), 

A z =  a(O,O)+a(O, 1) exp(i42)+a(0,  -1) exp(-ic$2), 
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Figure 1. Unit cells for the Villain model (A), B model (B), and C model (C). Full bonds 
correspond to JLj = J and broken bonds correspond to .TI, = -J. 

Then one has for the Villain model 

for the B model 

AI A, A4 e-;*, 
A4 A2 A3 

R3 eidl A4 A2 

and for the C model 

/ A1 A3 0 A4e-’*I\ 

\A3ei*l 0 A4 A2 , I 
The determinants of the matrices A(41, &) are polynomials in z and trigonometric 
functions of the integration variables 4i. They are given below for 
1) the Villain model: 

det A ( + ] ,  qh2)= ( 2 ’ -  1)’[(z2+ 1)2-222(c0s 2 42+c0s  &)I, (8) 
2) the B model: 

det A (41~42) 
= - 2 ~ ~ ( 1 - ~ ~ ) ~ ~ 0 ~ ~ ~ + 1 6 2 ~ ( 1 - ~ ~ ) s i n ~ ~ ~ c o s ~ ~  

+ z 6 ( z 2 + 2 2  cos 42+  1)[(1+z)*-4z2 cos2 42-4 sin2 421 
+(z2-22t cos d2+1)[ (1  + Z ~ ) ~ - - ~ Z ~  cos2 42-4z4sin2 421, (9)  

and 
3)  the C model: 

det A ( 4 1 ~ 4 2 )  
= -2z4(1 - z ’ ) ~  COS 4 1 + 4 ~ 4 ( i  - C C ~ S  4 : )  

x[z2(z2+22 cos 4 2 + 1 ) + z 2 - 2 2  cos 42+1](22+22 c o s 4 2 + l )  
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-[4z2 sin2 q52 + ( z 2  - 22 cos c $ ~  + 1)’][(4 cos2 4 2  - 3)z2 - 11 

- z 8 [ ( t 2 + 2 2  cos 42+  1)’+4 sin2 42](22-4 cos242+3) 

-42’ sin2 42(22 - 22 cos 42 + 1 ) ( Z 4  + 2 t 3  cos 42 + 22’ - 22 cos 42 + 1). 
(10) 

We notice that equation (8) leads to a different expression for the free energy from that 
derived by Villain (1977). 

3. Thermodynamic quantities 

We use the dimensionless units for the free energy f = -F/kBT and the exchange 
interaction constant K = J/kBT. In these units one obtains: 
1) the internal energy of the system 

EIJ = -af/aK, 

2) the specific heat 

ClkB = K2(a2f/dK2), 

and 
3) the entropy 

SlkB = f -K(af /aK).  (13) 

As the explicit expressions for all these quantities (1 1)-(13) are rather complicated and 
they may be straightforwardly derived from equations (8)-(10), we present here only 
the numerical results for all cases and compare them with the Ising model. 

In figure 2 the internal energy is shown. At T = 0 the internal energy for the model5 
containing frustrated cells is greater than that for the Ising model as some of the bonds 
cannot be satisfied. The ground state energy EG can be easily related to the fraction of 

k, T/J 

Figure 2. Internal energy for the Villain model (A), B model (B), C model (C), and the Ising 
model (D). 
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frustrated cells c by the equation 

E G = - ~ J ( ~  - ~ / 2 ) .  (14) 
In the most frustrated case the internal energy slowly grows with temperature and 
recalls the temperature dependence of energy of the antiferromagnetic triangular Ising 
model which is also a model system with all the cells being frustrated (Wannier 1950). 
For the remaining models a region of faster growth of the internal energy can be 
distinguished. This is revealed in the specific heat which is presented in figure 3. For the 
completely frustrated model the specific heat has a rather broad maximum at the 
temperature kBT/J=0 .7 .  In this case there is then no phase transition and any 
long-range order is hardly expected (see also Villain 1977). On the other hand, if only 
one third of the lattice cells is not frustrated, a singularity in the specific heat already 
appears. This singularity clearly suggests that a system exhibits a phase transition with 
some kind of long-range ordering below the transition temperature. If one half of the 
lattice cells is frustrated, the singularity comes out at a higher temperature. For both the 
B and C models, the specific heat singularity with the critical exponent a = 0 is of the 
same type as in the Ising model, while peaks in the specific heat are more narrow for the 
systems with frustration. 

s" 
\ 
U B \  

0 1 2 
kB T / J  

I 

Figure 3. Specific heat for the Villain model (A), B model (B), C model (C), and the Ising 
model (D). 

In all three cases the ground state of the system is strongly degenerated. This 
degeneracy can be expressed by the number of minimum length pairings of the 
frustrated cells (Kirkpatrick 1977b). For the Villain model we reproduce the exact 
result of Kasteleyn (1961) S ( T  = 0) = 0.291kB. For the other models the entropy at 
T = 0 is 0.178kB and 0.082kB, for the B and C models, respectively. The temperature 
dependence of the entropy is shown in figure 4. 
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U I L 

kB T/J  

Figure 4. Entropy for the Villain model (A), B model (B), C model (C), and the k ing  model 
(D). 

4. Molecular field approximation 

In order to understand the ground state of the considered models better, we have also 
studied the molecular field approximation equations for the averages ( S f ) .  

A few formulations of the mean-field theory in spin glasses exist. The simplest 
Weiss approximation fails in reproducing the spin-glass solution (Southern 1976). 
Therefore, more elaborate approximations have been developed by Kaneyoshi (1975) 
and Southern (1976). Kinzel and Fisher (1977) divided spins in a spin glass into two 
classes of spins according to their orientation and later performed averaging over the 
probability distribution for molecular fields. This method was recently shown to be 
equivalent to the replica method (Chalupa 1978) which was commonly used to find the 
free energy of a random system. 

In all the above formulations there is one additional approximation introduced as 
compared with the standard mean-field theory. In order to make the problem tractable, 
a set of selfconsistent equations for all the averages ( S f )  in the crystal is replaced by one 
equation with an additional averaging over the molecular field with an appropriate 
probability distribution. This assumption allowed Kinzel and Fisher (1977) to derive a 
relationship between the 'freezing' temperature Tf and the concentration of impurity 
bonds which may be linear or square-quadratic for simple distributions of the exchange 
bonds. In fact, the former relationship is possible only while all the bonds are satisfied, 
i.e. there is no frustration effect. The 'freezing' temperature can in both cases be 
expressed by the first moment of the distribution of effective couplings (Kinzel and 
Fisher 1977). 

Let us concentrate for a moment on the Villain model and treat all the neighbouring 
spins of a particular site as equivalent and put ( S : )  = ( S " ) .  A molecular field acting on 
this site may be equal to 4J(S') or 2 J ( S ' )  or zero. Here we only consider the situation 
when all spins are oriented according to the molecular field acting on them as this is the 
only case which leads to the correct ground state energy with the least possible number 
of exchange interactions unsatisfied (see figure 2 for T = 0). One of these arrangements 
is a configuration in which a field with absolute value equal to 2 J ( S ' )  acts on each spin, 
It means that exactly one bond coming out of each site is unsatisfied. However, such a 
configuration of spins cannot in practice stabilise because the entropy of such a state is 
very small, contrary to the exact results given in figure 4. The only freedom in such a 
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state is a distribution of unsatisfied bonds over a lattice with the constraint that any two 
unsatisfied bonds cannot join together. 

Consider the opposite situation when half of the spins experience a molecular field 
equal to 4J(S') and the other half are oriented stochastically as the field acting on them 
is equal to zero. For such a spin arrangement the degeneracy is equal to the product of 
the number of possible distributions of Nm/4 spins which have two of their neighbours 
oriented independently of the bonds, by the number of all possible configurations of 
these spins, which is 2"'4. In this case the unsatisfied bonds form chains in the lattice. 
These chains may either be closed or have free ends. One obtains the simplest 
realisation of such a structure when all spins point upwards. This is one of many 
configurations included in the degenerate ground state. The negative bonds in this state 
are not satisfied. Let us call spins lying on these bonds A spins and the other spins B 
spins. The free energy of the Villain model then reads 

and the molecular field equations are 

(Si) = tanh 2K( (S i ) - (S i ) ) ,  

(S ; )  = tanh 2 K ( ( S i )  + (Si)). 

These equations give the transition temperature T, = = 2 h J / k B .  
Similarly the models with every third and fourth vertical line negative may be 

considered. In the former case we call the spins on the lines of negative bonds A spins 
and all the other spins B spins. The free energy is 

F / k B T =  -In 2-$[ln cosh2K((S;()-(Si))+2lncoshK(3(S;)+(Si))] 

+~K(3(Si )2- (Si )2)+~K(Si ) (S i ) ,  (17) 
and the critical temperature is found from the system of equations 

( S i )  = tanh 2K((Si )  -(Si)), 

(S; )  = tanh K(3(S i )  +(Si)) .  

In the latter model we introduce three different types of spins. Spins lying on the lines of 
negative bonds we call A spins, their neighbours B spins, and the spins which have no 
neighbour on the line of negative bonds, C spins. The free energy for this system is 

and it gives the molecular field equations 

( S i )  = tanh 2K((S;) - (Si)) ,  

(S ; )  = tanh K ( ( S i )  + 2(S i )  +(S$)) ,  

(S; )  = tanh 2K( (S i )  + ( S t ) ) .  

In table 1 we compare the mean field values of the transition temperature with their 
exact values. As usual in the mean-field approximation, the transition temperatures are 
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Table 1. Comparison between the values of the transition temperature obtained exactly and 
with the help of the molecular field approximation in units 4J/kB= 1. 

Percentage of Transition temperature 
frustrated 
cells Mean field Exact 

Villain model 100 0.7071 0.187t 
B model 66.7 0.8431 0.342 
C model so 0.9051 0.410 
Ising model 0 1 .oooo 0.5673 

~~ 

i For the Villain model this value corresponds to the maximum in the specific heat. 

overestimated, but they decrease with increasing frustration, in a similar way to the 
exact values. 

The order parameters are shown in figures 5-7. Asolution with all the averages ( S " )  
different from zero appears below the phase transition temperature and has a lower 
energy than that of a paramagnetic solution. For the spins lying on the unfulfilled bonds 
these averages slowly increase with decreasing temperature below the point of a phase 
transition, and only near T = 0 do they grow to reach the zero-temperature limit 
(SX) = 1. On the other hand, temperature dependence of the other averages ((Si) and 
( S : ) )  is similar to that of the perfect Ising ferromagnet in the molecular field approxi- 
mation. This suggests that regions of spins which always keep the same relative 
orientation in all possible ground states, called by Derrida et a1 (1978) 'packets', may 
appear in between the nonfrustrated bonds. In fact, the molecular field approximation 
gives only the solution with all spins oriented upwards at T = 0. 

Of course, there is no reason why the unfulfilled bonds should lie on the lines of 
negative interactions. For the completely frustrated model they may be distributed 
over the whole lattice. For the models with less frustration the bonds around non- 
frustrated plaquettes must be fulfilled in the ground state as the ground-state energy 
satisfies condition (14). This limits the unfulfilled bonds only to regions of frustrated 
cells. 

k, T N z  

Figure 5. Selfconsistent solution of the molecular field equations for the Villain model. 
z =4. 
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0 O L  
k, T/J z 

Figure 6. Selfconsistent solution of the molecular field equations for the B model. z = 4. 

1 ne 

%T/Jz 

Figure 7. Selfconsistent solution of the molecular field equations for the C model. z = 4. 

5. Final remarks and discussion 

We have shown that the presence of frustration changes drastically properties of the 
two-dimensional Ising model. For the two systems containing strips of nonfrustrated 
cells, the B and C models, a singularity in the specific heat appears, while it is not present 
for the Villain model. This singularity exists at a lower temperature than for the 
ferromagnetic Ising model and has a smaller amplitude. The behaviour of the specific 
heat is here similar in both these aspects to that obtained within the same method for the 
king model containing regularly distributed impurities (Au-Yang et a1 1976, Au-Yang 
1976). 

The models considered should show no net magnetic moment due to different 
orientations in different ‘packets’ of spins. On the other hand, a certain configuration of 
spins from many with the same energy stabilises at low temperatures. The symmetry of 
the system is broken by that particular spin arrangement and transitions to the other 
states need rather higher energy to generate intermediate states (for instance an energy 
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necessary to reverse all spins within one ordered area). At this point there is no 
conceptual difference between the models with periodically distributed frustration and 
a spin glass. Therefore, this suggests that a spin glass can exist in the two-dimensional 
Ising model in the same sense. A similar conclusion was recently reached by Stauffer 
and Binder (1978) who have shown by a Monte Carlo calculation that the ground state 
of the Edwards-Anderson spin-glass is highly degenerated and that the symmetry of the 
order parameter is quasicontinuous. 

However, in a spin glass, frustrated cells are distributed randomly and its properties 
should be related to the random distribution of frustration (Fradkin eta1 1978). Then a 
broad maximum observed in the specific heat may be due to averaging over different 
local distributions of frustrated cells. The Monte Carlo calculations of Vannimenus and 
Toulouse (1977) and recent series expansion in powers of negative bonds concentration 
x by Grinstein et a1 (1979) suggest that ferromagnetism is destroyed for x = 0.09. At  
higher concentrations a new phase (spin glass) forms with no long-range order. A 
similar transition has been observed for small spin systems (Derrida et a1 1978). In the 
Villain model also only short-range correlations should be present. These correlations 
are due to satisfied bonds as in the ground state three bonds around each cell are 
fulfilled. On the contrary, for the B and C models there are long-range correlations 
within one ‘packet’ while no between spins belonging to two different ‘packets’ are 
expected. This possibility of a long-range order is also indicated by the molecular field 
approximation, although it gives a rather poor estimate for the transition temperature. 
To clarify this problem further we will present a future report of our results for the 
correlation functions. 

We hope that rigorous solutions of the two-dimensional Ising model with periodi- 
cally distributed frustration will contribute to a better understanding of spin glasses. 
We should mention that if spin ordering in spin glasses exists only on short distances, as 
in the Villain model, any renormalisation group transformation should be very carefully 
constructed in order not to average over important correlations. 
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